Intracellular-messenger-mediated cation channels in cultured olfactory receptor neurons.
نویسنده
چکیده
After 2-3 weeks in culture, pupal olfactory receptor neurons from the antennae of male Manduca sexta respond to their species-specific sex pheromone by opening cation channels. These pheromone-dependent cation channels are the only channels previously found in cultured olfactory neurons that promote inward currents at membrane potentials more negative than the resting potential. The pheromone-dependent currents depend on external Ca2+ concentration. They are inwardly rectified with 10(-7) mol l-1 external Ca2+ and linear with 6 mmol l-1 external Ca2+. This paper shows that perfusion of cultured olfactory receptor neurons with GTP gamma S, ATP, inositol 1,4,5-trisphosphate or 10(-6) mol l-1 Ca2+ elicits cation currents resembling the pheromone-dependent cation currents in expressing inward rectification with 10(-7) mol l-1 external Ca2+ and being linear at external Ca2+ concentrations of 2 mumol l-1 or more. Stimulation with protein kinase C also elicits cation currents that share properties with the pheromone-dependent cation currents. All agent-induced cation currents appear to depend either directly or indirectly on Ca2+ concentration.
منابع مشابه
Cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the hawkmoth Manduca sexta.
Moth pheromones cause rises in intracellular Ca(2+) concentrations that activate Ca(2+)-dependent cation channels in antennal olfactory receptor neurons. In addition, mechanisms of adaptation and sensitization depend on changes in cyclic nucleotide concentrations. Here, cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the moth Manduca sexta are described, which sha...
متن کاملTransduction mechanisms in vertebrate olfactory receptor cells.
Considerable progress has been made in the understanding of transduction mechanisms in olfactory receptor neurons (ORNs) over the last decade. Odorants pass through a mucus interface before binding to odorant receptors (ORs). The molecular structure of many ORs is now known. They belong to the large class of G protein-coupled receptors with seven transmembrane domains. Binding of an odorant to ...
متن کاملMolecular biology of olfactory receptors.
OR proteins bind odorant ligands and transmit a G-protein-mediated intracellular signal, resulting in generation of an action potential. The accumulation of DNA sequences of hundreds of OR genes provides an opportunity to predict features related to their structure, function and evolutionary diversification. The OR repertoire has evolved a variable ligand-binding site that ascertains recognitio...
متن کاملEmerging complexity of odor transduction.
For a long time we thought we understood odor transduction. Odors activated seven-helix G-protein coupled receptors that stimulated adenylyl cyclase; this raised the intracellular cAMP concentration, which, in turn, opened cation channels that depolarized olfactory receptor neurons. Depolarization elicited the action potentials that told the brain about smell. The idea was attractive for its si...
متن کاملOdor-induced cAMP production in Drosophila melanogaster olfactory sensory neurons.
Insect odorant receptors are seven transmembrane domain proteins that form cation channels, whose functional properties such as receptor sensitivity are subject to regulation by intracellular signaling cascades. Here, we used the cAMP fluorescent indicator Epac1-camps to investigate the occurrence of odor-induced cAMP production in olfactory sensory neurons (OSNs) of Drosophila melanogaster We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 178 شماره
صفحات -
تاریخ انتشار 1993